
Lecture 20
15.1 Double and iterated integrals over rectangles

Jeremiah Southwick

March 20, 2019



Last class

Quadric Surfaces (12-6 lecture)



Definite integrals

Recall that in Calculus we defined the integral from x = a to x = b
of a function f (x) to be the signed area under the function and
above the x-axis.
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Definite integrals

We approximated this area with rectangles of smaller and smaller
width.
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Definite integrals
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Then we defined the integral of the function from x = a to x = b
to be the limit of the sum of the areas of the rectangles as the
width of each rectangle went to 0:∫ x=b

x=a
f (x)dx =

lim
n→∞

n∑
i=0

f (xi )∆xi
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Double integrals
We want to do the same thing with multivariable functions that we
did with single variable functions in Calculus.

In Calculus we worked over an interval because our domain was the
real line. Now we have to work over regions in the xy -plane. The
most basic region is a rectangle. We’ll call the rectangle R.
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All rectangles are given by a
pair of inequalities, one for the
x-values and one for the
y -values.

a ≤ x ≤ b & c ≤ y ≤ d
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Double integrals

Given this framework, we can ask the following question:

Question
How do we calculate the signed volume under a function and
above a rectangle in the xy -plane?
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Double integrals

Given this framework, we can ask the following question:

Question
How do we calculate the signed volume under a function and
above a rectangle in the xy -plane?
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Possible answer #1

One way we could do this is to divide the rectangle up into smaller
rectangles and approximate the volume from the resulting bricks.
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We could make these rectangles smaller and smaller and then the
volume approximation would get better and better.
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Possible answer #1 cont.
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If we have n smaller rectangles and a point (xi , yi ) in each
rectangle, then the volume approximation would be

∑n
i=1 f (xi , yi )∆Ai .

We define the double integral to be this limit as n approaches
infinity.

Answer #1:

∫ ∫
R
f (x , y)dA = lim

n→∞

n∑
i=1

f (xi , yi )∆Ai
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Possible answer #2
In general, double integrals are hard to calculate. So instead we
calculate volume as an iterated integral.

The idea for an iterated integral is to first find a vertical slice of
the volume. Let’s take slices in the x-direction, starting at y = c .
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Possible answer #2 cont.
Next we will iterate the area we found across the region R for
different y -values. The area will be different for each y -value and
hence will be a function of the y -value.
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Possible answer #2 cont.
Next we will iterate the area we found across the region R for
different y -values. The area will be different for each y -value and
hence will be a function of the y -value.
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Possible answer #2 cont.
Next we will iterate the area we found across the region R for
different y -values. The area will be different for each y -value and
hence will be a function of the y -value.
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Possible answer #2 cont.

If we continuously iterate this area-slice across the whole region
from y = c to y = d and “add up” all the areas, we’ll get the
volume of the region.

Any time we “add up” a function like this, we are calculating an
integral.

Answer #2:

∫ y=d

y=c
A(y)dy
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Possible answer #2 cont.

Answer #2:

∫ y=d

y=c
A(y)dy

Question
Can we find a formula for A(y)?
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So A(y) is an integral. A(y) =
∫ x=b
x=a f (x , y)dx .
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Answer #2 cont.

Answer #2:

∫ y=d

y=c
A(y)dy and A(y) =

∫ x=b

x=a
f (x , y)dx

This allows us to improve answer number 2.
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Answer #3
There was nothing special about doing this in the x-direction first.
If we had started with vertical slices in the y -direction, we could
iterated through these:
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Answer #3
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Answer #3

Answer #3:

∫ x=b

x=a
A(x)dx

As before, the area A(x) is given by an integral.
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Answer #2:
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A(x)dx and A(x) =

∫ y=d

y=c
f (x , y)dy

Thus answer 3 looks like answer 2 but with the bounds switched.
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Fubini’s Theorem

A mathematician named Fubini proved that all three of the
answers we found are equal.

Theorem
If f (x , y) is continuous throughout the rectangular region
R : a ≤ x ≤ b, c ≤ y ≤ d , then∫ ∫

R
f (x , y)dA =

∫ y=d

y=c

∫ x=b

x=a
f (x , y)dx dy

=

∫ x=b

x=a

∫ y=d

y=c
f (x , y)dy dx



Example

Example

Find the volume under f (x , y) = 4 − x − y and over the rectangle
R : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1.

We have volume =∫ x=2

x=0

∫ y=1

y=0
(4 − x − y)dy dx =

∫ x=2

x=0

[
4y − xy − y2

2

]y=1

y=0

dx

=

∫ x=2

x=0
(4 − x − 1

2
)dx =

[
7

2
x − x2

2

]x=2

x=0

=
7

2
(2) − 22

2
= 5.

Or we could do it in the other order:∫ y=1

y=0

∫ x=2

x=0
(4 − x − y)dx/dy =

∫ y=1

y=0

[
4x − x2

2
− yx

]x=1

x=0

dy

=

∫ y=1

y=0
[8 − 2 − 2y ]dy =

[
6y − y2

]y=1

y=0

= 6 − 12 = 5
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Another example

Example

Calculate

∫ ∫
R
xyexy

2
dA for R : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1.

If we choose dxdy , then we’ll have to begin with a messy
integration by parts calculation. However, if we begin dydx , then
the exponent on the exponential has partial derivative 2xy , which
appears (without the 2) as a coefficient. Thus the order dydx
works as a u − du substitution.∫ x=2

x=0

∫ y=1

y=0
xyexy

2
dy dx =

1

2

∫ x=2

x=0

∫ y=1

y=0
2xyexy

2
dy dx

=
1

2
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x=0
exy

2

]y=1

y=0

dx =
1

2

∫ x=2

x=0
(ex − 1)dx

=
1

2

[
ex − x

]x=2

x=0

=
1

2
[e2 − 2 − 1 + 0] =

e2 − 3

2
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